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1. Introduction

Benford’s Law states that for commonly observed empirical data, regularities

should occur in the First Significant Digits (FSDs) of the data. The FSD of a

number x is the leading digit of x in the base 10 numbering, for instance

FSD of π = 3 since π = 3︸︷︷︸
FSD

.14159 . . .

In its strong form, Benford’s law says for the FSDs {1, . . . , 9}, the frequency ob-

served of each digit d ∈ {1, . . . , 9} should be approximately log10 (1 + 1/d). Many

papers have detailed occurrences of Benford’s Law (see Benford (1938); Berger and

Hill (2007); Giles (2007)). A few papers have also categorized properties character-

izing distributions satisfying Benford’s Law (see Boyle (1994); Hill (1995b); Allaart

(1997)), or found distribution families which satisfy it for particular parameter val-

ues (see Leemis et al. (2000); Scott and Fasli (2001)). Unfortunately, no general

principle has been found to explain the Benford phenomenon in data, nor provide

general criteria as to when to expect Benford’s Law to hold.

Benford’s Law has also been used to test for fraud and error present in a variety

of contexts. Examples using Benford’s law for fraud and error detection include

tax fraud Nigrini (1996), reliability of survey data Judge and Schechter (2009),

environmental law compliance Marchi and Hamilton (2006) and campaign finance

Cho and Gaines (2007). This paper first focuses on the testing issues that arise

when assessing conformance with Benford’s Law, then contributes towards general

characterizations of the Law, in particular providing a rate of convergence to the

law under appropriate transformation.

Testing for Benford’s Law has recently been performed on a variety of data sets, in

the broad context of detecting fraud. This paper focuses on two testing issues. The

first is the suitability of existing tests which have been used in the literature. Such
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tests are too conservative and consequently Section 2 derives new asymptotically

valid test values which allow for more powerful tests and evaluates small sample

values of the tests. Measures of fit have also been used as “rules of thumb” to check

concordance with Benford’s Law. Section 2 also provides a new interpretation for

such measures and derives critical values for hypothesis testing. The second testing

issue is the application of tests on data which inherently do not satisfy the law (for

a discussion, see Durtschi et al. 2004). Clearly, rejection of tests for Benford on

data which inherently fails the law will not help uncover fraud or error. Section 3

develops a result that the transformation of a random variable to a sufficiently high

power satisfies Benford within arbitrary precision, allowing application of the above

tests to any sample. Section 4 answers how quickly a random variable converges

to Benford, provides a discussion of the main results, applies them to distribution

families of interest and concludes.

2. Testing and Benford’s Law

One of the most popular applications of Benford’s Law is fraud detection and

testing of data quality. A few tests have been constructed, and new tests recently

proposed, but at present it appears that properties of the estimators themselves are

not well understood. In fact, asymptotic results indicate that the test values used in

some recently published papers can be made more powerful at the significance levels

used (for example Cho and Gaines 2007; Giles 2007). In addition, such tests appear

rather ad hoc and the power of such tests appears to be almost wholly unexamined.

I now discuss tests in use, provide asymptotically valid test values, and explore their

small sample properties finding that tests I provide are very good for N ≥ 80.

2.1. Popular Tests in Use. Pearson’s χ2 test is a natural candidate for test-

ing whether an observed sample satisfies Benford’s Law, however, due to its low

power for even moderately small sample sizes it is often unsuitable. Consequently,
3



other tests have been devised, and commonly used tests for conformance with Ben-

ford’s Law include the Kolmogorov-Smirnov test and the Kuiper test. More recently

Leemis et al. (2000) have introduced the statistic m (max)

m ≡ max
d∈{1,...,9}

|Pr (X has FSD = d)− log10 (1 + 1/d)|

Similarly, Cho and Gaines (2007) propose the d (distance) statistic.

d ≡

 ∑
d∈{1,...,9}

[Pr (X has FSD = d)− log10 (1 + 1/d)]2

1/2

In both cases the sample analogue of Pr (X has FSD = d) is used for evaluation,

although no test values are known for these statistics.

2.2. Issues with current tests in use: Kolmogorov-Smirnov and Kuiper.

The χ2, Kolmogorov-Smirnov (DN) and Kuiper (VN) tests for a sample of size N

appear to be the most common tests in use. In fact, latter two have a “correction

factor” introduced by Stephens (1970) which when applied to such tests produce

fairly accurate test statistics regardless of sample size. Denote these tests with the

correction factor applied as D∗N and V ∗N , respectively. For instance, for the modified

Kuiper test V ∗N presented in Stephens, a 99% confidence set is produced by all

samples {Xi} such that V ∗N < 2.001. However, such tests are based on the null

hypothesis of a continuous distribution, and are generally conservative for testing

discrete distributions as discussed by Noether (1963). A simple example where the

sample is drawn from a Bernoulli distribution with p = 1/2 (fair coin tosses) in

the supplemental appendix shows that a V ∗N test at 99% significance generates a

.99994% critical region. Thus test values derived for continuous distributions can

be extremely conservative in rejecting the null.
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The Stephens (1970) test values for the modified Kuiper (D∗N) and Kolmogorov-

Smirnov (V ∗N) tests at commonly used significance levels are reported in the first

column of Table 1. New asymptotically valid test values under the specific null

hypothesis that Benford’s Law holds are in the second column of Table 1. These

test values are derived from an application of the CLT to a multivariate Bernoulli

variable that corresponds to a random variable which exactly satisfies Benford’s Law.

Inspection shows that in fact the test values based on the assumption of a continuous

underlying distribution are too high, and thus too conservative. One appropriate test

is that of Conover (1972), but is sufficiently involved and computationally expensive

that practitioners have adopted the above tests. Furthermore, the test statistics as in

Table 1 allow easy computation of the relevant test as well as allowing evaluatation

of published literature.

Table 1. Continuous vs Benford Specific Test Values

Continuous Benford Specific
Test Statistic α = .10 α = .05 α = .01 α = .10 α = .05 α = .01
Kuiper Test (V ∗N) 1.620 1.747 2.001 1.191 1.321 1.579
KS Test (D∗N) 1.224 1.358 1.628 1.012 1.148 1.420

Pulling in an example from the Benford literature, Giles (2007) looks for devia-

tions from Benford’s Law in certain eBay auctions to detect for collusion by buyers

or interference by sellers. Giles uses the Kuiper Test for continuous distributions

(N = 1161) as in Table 1 with a test value of 1.5919 and cannot reject conformance

to Benford at any level. However, we see that the Benford specific tests reject

conformance to Benford at α = .01. Marchi and Hamilton (2006) examine discrep-

ancies in air pollution reporting by testing for conformance to Benford using the

Kolmogorov-Smirnov test. In this case, the authors explicitly point out potential

problems with their test values, and the results would have changed if they had used

an α = .01 test level.
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2.3. The m and d tests and critical values. As far as the m and d tests are

concerned, no test values have been reported for use which address the above issues.

In order to derive asymptotic test statistics, define the modified test statistics m∗N

and d∗N given in Equations (2.1-2.2), where N is the number of observations.

m∗N ≡
√
N · max

d∈{1,...,9}
|Pr (X has FSD = d)− log10 (1 + 1/d)|(2.1)

d∗N ≡
√
N ·

 ∑
d∈{1,...,9}

[Pr (X has FSD = d)− log10 (1 + 1/d)]2

1/2

(2.2)

The reason for the appearance of the
√
N term is as follows. The true FSD fre-

quencies Pr (X has FSD = d) correspond to Bernoulli parameters as do the Benford

log10 (1 + 1/d) terms. Letting 1FSD=d(X) be the indicator that X has a FSD equal

to d, the random vector

TN ≡
[

1FSD=1(X)− log10 (1 + 1/1) . . . 1FSD=8(X)− log10 (1 + 1/8)
]

is iid and by the CLT,
√
NTN converges in distribution to a N(0,Σ) random vari-

able. Both m∗N and d∗N can be formed as continuous mappings of
√
NTN in which

the
√
N term can be slipped outside since the functions max and (

∑
x2i )

1/2 are

homogeneous. The end result is both m∗N and d∗N converge in distribution to a

continuous function of a N(0,Σ) variable, where Σ can be computed from TN .

Rejecting the null that Benford’s Law holds when m∗N and d∗N are large provides a

consistent test statistic (e.g. Lemma 14.15 of van der Vaart 2000). Rejection regions

for common test levels are provided in Table 2. The new d∗ test values confirm the

conclusions of Cho and Gaines (2007) who test political contribution data, broadly

finding that the data does not fit Benford’s Law.
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Table 2. m∗ and d∗ Test Values

Asymptotic Test Level
Test Statistic α = .10 α = .05 α = .01
Max Test (m∗N) 0.851 0.967 1.212
Distance Test (d∗N) 1.212 1.330 1.569

2.4. Test Performance for Small Samples. Naturally, the question arises of how

good the critical values reported in Tables 1 and 2 are in practice for small sample

sizes. For sample sizes N ≤ 500 I have numerically computed the appropriate test

values for a level α = .01 test for all four statistics as shown in Figure 1, based

on 106 draws for each sample size. The Figure contains numerically obtained test

values in sample size increments of N = 5, and horizontally superimposed are the

asymptotic test values for each test. The small N performance is fairly good in that

the simulated test statistics are very close to the asymptotic values, especially for

N ≥ 80. This shows that the critical regions in Table 2 are reasonable for small as

well as large N .

Figure 1. m∗N and d∗N Test Values for Small Samples

(a) Kuiper and KS Tests (b) Max and Distance Tests
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In conclusion, this section has given more powerful tests for the Kolmogorov-

Smirnov and Kuiper statistics as well as valid test statistics for them and d statistics

used in the Benford literature. However, when these tests are used for error or fraud

detection, they are based on the Null Hypothesis that in the absence of fraud or

error, Benford’s Law is satisfied. We address the ramifications of this Hypothesis in

the next section.

3. Ensuring Conformity to Benford’s Law

The general approach of using Benford’s Law for fraud detection is to compare

FSD frequencies in sample data with the Law, as for the tests discussed above.

Of course, whether Benford’s Law holds for a particular sample depends upon the

underlying distribution. Therefore testing for Benford is restricted by the underlying

properties of data. One of the major obstacles in using this approach is that often

the distribution one would like to test does not remotely satisfy Benford’s Law,

regardless of data quality (see Table 3). The results in this section ameliorate this

issue by developing a transformation (Theorem 1) that may be applied to data that

induce compliance with Benford’s Law. The implications of Theorem 1 are further

developed in the next Section.

Before applying tests based on Benford’s Law to a random variable X, one should

first expect that X approximately satisfies Benford. This idea is formalized in the

following Definition.

Definition. A random variable X ε−satisfies Benford’s Law if for all FSDs d

|Pr(X has FSD = d)− log10(1 + 1/d)| < ε

Before applying the tests in Section 2 it is necessary to ensure that the sample

ε−satisfies Benford’s Law. This is best illustrated with an example. Consider a
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sample S composed of two sub-samples, SH and SC and hypothesize SH comes from

an “Honest” data source while SC comes from “Cheaters.” The underlying assump-

tion for fraud detection is that SH is closer to satisfying Benford than SC . But to

apply the tests of Section 2, a minimum requirement is that SH is approximately

Benford, one option being that X ε−satisfies Benford’s Law. If the sample S could

be transformed to satisfy the Law so that SH satisfies the Law while SC fails, the

transformation would be a basis for detecting anomalies in SC . The main result

shown in this Section, Theorem 1, provides such a means of transforming S.

Theorem 1 (Exponential-Scale Families). Let X be a random variable with contin-

uous pdf and fix ε > 0. There is an α∗ such that for all α ≥ α∗:

(X/σ)α ε− satisfies Benford’s Law for all σ

In light of the above discussion if one is fairly confident about the distribution

of X (say, using a Kernel Density Estimate), one strategy is to apply Theorem 1

to transform X to ε−satisfy Benford’s Law and then perform tests. Methods for

computing sufficiently large α follow from the intermediate results in this Section.

To be concrete, suppose we have a random sample {Xi} and we feel confident that

(X − µ) /σ ∼ N(0, 1), perhaps by estimating µ and σ from the sample. There are

several values of µ and σ where we should not expect that the sample will obey

Benford’s Law. However, fix any ε > 0 and from Theorem 1 we know there is an

α(ε) such that for Y ∼ (X − µ)α(ε) /σα(ε), the FSD frequencies observed in Y should

be within ε of Benford’s Law. A sufficiently large α(ε) may be calculated from the

distribution of X using the techniques below. Accordingly, m∗N and d∗N calculated

with Y in place of X should be close to zero, allowing for detection of anomalous

observations. This Section proceeds with intermediate steps leading up to a proof

of Theorem 1.
9



3.1. Approximation by step functions. The following definition has an impor-

tant relationship with Benford’s Law, as will be shown shortly.

Definition. Let Y be a random variable with pdf f . Fix ε > 0 then Y can be

ε−approximated by integer step functions, denoted Y ∈ I(ε) if there exist {ci} s.t.∣∣∣∣∫
A

f(y)dy −
∫
A

∑
ci1[i,i+1)(y)dy

∣∣∣∣ ≤ ε for all measurable A

For example, by taking ci ≡ 0 for any random variable Y , Y ∈ I(1). Although the

definition of I(ε) is simple, any continuous random variable X for which log10X ∈

I(ε) “approximately” satisfies Benford’s Law. The formal statement of this fact is

Lemma 1.

Lemma 1. Suppose X is a positive random variable with continuous pdf and let

Y ∼ log10X. If Y ∈ I(ε) then X ε−satisfies Benford’s Law.

Proof. See Appendix. �

This lemma provides a check of whether a random variable X ε-satisfies Benford’s

law by checking whether log10X ∈ I(ε). Since Lemma 1 will be the workhorse

throughout the rest of the paper, some remarks on its hypotheses are in order. First,

the assumption of a continuous pdf is fairly mild and examination of the proofs shows

it can be weakened, but this assumption will be maintained for brevity. Second, the

restriction to positive random variables is really not an imposition since the First

Significant Digits of X are identical to those of |X|.

3.2. Characterization of I(ε). The simplicity of the definition of I(ε) allows for a

precise characterization of the least ε s.t. X ∈ I(ε). By definition, X ∈ I(ε) requires

that

(3.1) sup
A measurable

∣∣∣∣∫
A

f(y)dy −
∫
A

∑
ci1[i,i+1)(y)dy

∣∣∣∣ ≤ ε
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In solving for the best choice of {ci} it suffices to consider each interval [i, i + 1]

individually. Surprisingly, the solution to these individual problems is quite simple

in that the optimal ci turn out to be the gross estimates ci ≡
∫
[i,i+1]

f(x)dx. These

ci are optimal because of the “maxi-min” nature of Equation (3.1): the best ci must

minimize integrals of the form
∣∣∫
A

[f(y)− ci]−dy
∣∣ and ∣∣∫

A
[f(y)− ci]+dy

∣∣. Following
this idea leads to a proof of Lemma 2.

Lemma 2. Suppose
∫
|f(x)| dx <∞. Then c∗ ≡

∫
[0,1]

f(y)dy solves

min
c

sup
A measurable

∣∣∣∣∫
[0,1]∩A

[f(x)− c]dx
∣∣∣∣

and the minimum attained is 1
2

∫
[0,1]
|f(x)− c∗| dx.

Proof. See Appendix. �

A first consequence of Lemma 2 is that for random variables Xk with pdfs of the

form f(x) = k1[0, 1
k
], Xk ∈ I(1− 1

k
) so considering large k, nothing can be said about

X ∈ I(ε) for ε < 1 without more information about the distribution of X. A second

consequence of Lemma 2 is that choosing the optimal {ci} allows computation of

the least ε such that X ∈ I(ε) directly. This characterizes the sets I(ε) completely,

a consequence stated as Theorem 2.

Theorem 2. Let X be a random variable with pdf f . The least ε s.t. X ∈ I(ε) is

given by

ε =
1

2

∑
i

∫
[i,i+1]

|f(x)−
∫
[i,i+1]

f(t)dt|dx(3.2)

Proof. Application of Lemma 2 on each interval [i, i+ 1]. �

Paired with Lemma 1 this forms a method to test for conformance with Benford’s

Law within a parametric family using analytic methods: take any random variable
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X with parameters θ, find the pdf of log10X, say g, and solve Equation (3.2) for g.

Intuitively, for parameters θ where g is fairly “flat,”
∫
[i,i+1]

|g(x)−
∫
[i,i+1]

g(t)dt|dx is

fairly small. Lemma 1 implies that X will ε−satisfy Benford’s Law for such θ, an

implication expanded on in the next section. These results provide precise analytical

tools to find parameters θ for X which will induce Benford’s Law.

3.3. Location-Scale Families and I(ε). By virtue of the fact Y ∈ I(ε) means

Y can be approximated by integer step functions, integer shifts and scaling of Y

preserve the ability to approximate Y by integer step functions. In particular for

integers a, b, let Z ≡ aY +b and then Z can be approximated by translating the {ci}

used to approximate Y . The new approximation will guarantee Z = aY + b ∈ I(ε).

Since this holds for all integers a and b, I(ε) is invariant under such transformations

as summarized in Lemma 3.

Lemma 3. Y ∈ I(ε) iff aY + b ∈ I(ε) for all integers a, b with a 6= 0.

Proof. See Supplemental Appendix. �

The last step towards proving Theorem 1 is a method of transforming any random

variable within its mean-scale family so that the transformed variable is in I(ε) for

arbitrary ε. This result is given in Theorem 3 and is followed by a sketch of the

proof.

Theorem 3 (Mean-Scale Approximation). Let Y be a random variable with contin-

uous pdf. For each ε > 0 there exists a σ(ε) s.t. σ ≤ σ(ε) implies (Y − µ) /σ ∈ I(ε)

for all µ.

Proof. See Appendix. �

The basic idea of the proof is as follows. To show that Y/σ ∈ I(ε) consider σ

as a transformation that flattens out the pdf of Y/σ as σ −→ 0. Once Y/σ is
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sufficiently flattened out, approximate its pdf via constants {ci} which correspond

to appropriately chosen elements of a Riemann sum, giving an ε approximation to

the pdf. In order to show (Y − µ) /σ = Y/σ − µ/σ ∈ I(ε) appeal to Lemma 3 to

argue that without loss of generality µ/σ ∈ [0, 1]. Finally, show that smoothing Y

further by dropping σ to σ/2 is enough that the improved approximation absorbs

the µ/σ term.

3.4. Proof of Theorem 1. With the above results, it is a simple step to get to the

main result of the section, Theorem 1. Let X be a positive random variable with

continuous pdf. Fix ε and note

log10 (X/σ)α = (log10X − log10 σ) / (1/α)

so from Theorem 3 for all sufficiently large α, log10 (X/σ)α ∈ I(ε) for all σ > 0. The

result then follows from an application of Lemma 1. If X is not positive a similar

argument applies to |X|.

4. Discussion: Exponential-Scale Families

This section discusses additional implications of Theorem 1, restated here for ease

of reference:

Theorem. Let X be a random variable with continuous pdf and fix ε > 0. There is

an α∗ such that for all α ≥ α∗, (X/σ)α ε− satisfies Benford’s Law for all σ.

Another way of stating this result is that the exponential transformation g(x) =

xα induces conformity to Benford’s Law for all sufficiently large α. More surprising

is that this transformation simultaneously induces approximate scale invariance, in

that (X/σ)α satisfies Benford’s Law for any scaling parameter σ. Scale invariance is

one of the fundamental properties that distributions satisfying Benford’s Law should

have (see Raimi 1976; Hill 1995a for formal definitions and results). Earlier work has
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detailed experimental evidence of high exponents of random variables to conform

to Benford’s Law independent of scale (For instance Scott and Fasli (2001) find the

Log-Normal distribution satisfies the Law for σ & 1.2).

Raising a random variable Y to the power α has the effect of leveling out the pdf of

log10 Y
α. Looking back to Theorem 2, this has the effect of scaling the

∫
[i,i+1]

|f(x)−∫
[i,i+1]

f(t)dt|dx terms in Equation (3.2) to
∫
[i,i+1]

|f(x/α)/α−
∫
[i,i+1]

f(t/α)/αdt|dx

thereby improving the approximation. More generally, any transformation g which

has this effect on log10 Y will eventually make g(Y ) ε−satisfy Benford’s Law. How-

ever, the particular transformation g(x) = xα is of interest due to its simplicity

and relevance for commonly modeled distributions. FSD frequencies of common

distributions are contrasted with the same distributions raised to the tenth power

in Table 3.

Table 3. FSD Frequencies

First Significant Digit
1 2 3 4 5 6 7 8 9

Benford’s Law .301 .176 .125 .097 .079 .067 .058 .051 .046
Normal(0,1) .359 .129 .087 .081 .077 .073 .069 .064 .060
Uniform(0,1) .111 .111 .111 .111 .111 .111 .111 .111 .111
Log-Normal(0,1) .308 .170 .119 .094 .079 .068 .060 .053 .048
Exponential(1) .330 .174 .113 .086 .072 .064 .058 .053 .049
Pareto(1,1) .556 .185 .093 .056 .037 .026 .020 .015 .012
Normal(0,1)10 .301 .176 .125 .097 .079 .067 .058 .051 .046
Uniform(0,1)10 .277 .171 .126 .100 .084 .072 .063 .056 .051
Log-Normal(0,1)10 .301 .176 .125 .097 .079 .067 .058 .051 .046
Exponential(1)10 .301 .176 .125 .097 .079 .067 .058 .051 .046
Pareto(1,1)10 .326 .180 .123 .093 .075 .062 .053 .046 .041
Sample Size of 107 using the default pseudo-random generator in R.

Table 3 shows a striking convergence of FSDs to Benford’s Law following the

transformation of being raised to the tenth power. Table 4 highlights the confor-

mance to Benford’s Law induced by the transformation x10. The Max Deviation

column of Table 4 lists the maximum FSD frequency deviation from the Benford
14



prediction for each row, showing that even the Uniform(0,1)10 distribution obeys

Benford’s Law reasonably well. The Theorem 2 Bound column lists the Upper

Bound on deviation from Benford’s Law given by Theorem 2. Although this bound

is not terribly good for the first column of distributions in Table 3, they become

reasonable for the second column after the transformation x10 is applied.

Table 4. Conformance with Benford’s Law (Sample Size: 107)

Max Theorem 2 Max Theorem 2
Distribution Deviation Bound Distribution Deviation Bound
Normal(0,1) .058 .673 Normal(0,1)10 .000 .056
Uniform(0,1) .190 .538 Uniform(0,1)10 .024 .058
Log-Normal(0,1) .007 .547 Log-Normal(0,1)10 .000 .046
Exponential(1) .029 .520 Exponential(1)10 .000 .042
Pareto(1,1) .255 .538 Pareto(1,1)10 .025 .058

We have just seen that the transformation g(x) = xα ensures reasonable confor-

mance to Benford’s Law for α = 10. More generally, how fast do random variables

conform to Benford’s Law as α increases? Here I first show that under mild con-

ditions, a rate of convergence of O(1/ log10 α) to Benford’s Law can be guaranteed.

This means for a random variable Xα, the maximum FSD deviation ε from the Law

is ≤ C/ log10 α for some constant C determined by X.

I then consider families of distributions which are closed under the transformation

g(x) = xα, in other words if X is the initial random variable then Xα is again in

the distributional family. These considerations allow us to connect conformance to

Benford’s Law with parameter values for some common distributions.

4.1. A Rate of Convergence to Benford’s Law. This paper has shown that as

α increases, Xα tends to satisfy Benford’s Law. However, for statistical testing of

Benford’s Law, we need to pick α so that Xα satisfies the Law within, say ε = .01.

How large does α need to be? In other words, if ε(α) denotes the least ε such that
15



Xα ε−satisfies Benford’s Law, how fast does ε(α) decrease? The answer is provided

by the following result.

Theorem 4. Let X be a random variable with a differentiable pdf f . Let ε(α) denote

the least ε such that Xα ε−satisfies Benford’s Law. ε(α) is O(1/ log10 α) provided

that

(1) E |log10X| <∞

(2) supx
∣∣ d
dx
xf(x)

∣∣ <∞
In addition, ε(α) is o(1/ log10 α) when E |log10X|

2 <∞.

Proof. See Appendix. �

This theorem shows that if ε(α) is the maximum deviation of Xα from Benford’s

Law, then ε(α) ≤ C/ log10 α for some constant C determined by X. The constant

may be determined from the proof for a given X, but as the Tables above illustrate,

actual conformance to Benford’s Law is often better than guaranteed. In practice,

direct numerical calculation of how wellXα conforms to the Law is a superior method

when one needs to know the exact level of conformance. However, the result does

provide a useful stopping point for numerical algorithms by bounding α.

4.2. Particular Families. Motivated by the convergence results above, it is a nat-

ural question to ask which families of distributions will satisfy Benford’s law for

particular parameter values. From Theorem 1, a natural way to start looking is

to find families of a variable X where Xs is again within the family. Three such

common families are the Log-Normal, Weibull, and Pareto distributions. The effect

of a transformation of X −→ (X/ν)s within these families are summarized in Table

5. Theorem 1 implies that the transformed variables (X/ν)s will ε−satisfy Benford’s

Law for sufficiently large s and any ν. Table 5 shows it is no coincidence that the

Log-Normal and Pareto families appear in the Table and the literature on scaling
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laws. If such distributions commonly occur in data, since for particular parameter

values Theorem 1 applies, Benford’s Law will be commonly observed in samples

drawn from these distributions as well.

Table 5. Families Closed under Powers

(X/ν)s

Distribution Functional Form Parameters Var(X)

Log-Normal(µ, σ)
(
xσ
√

2π
)−1

exp {−(lnx− µ)2/2σ2} (sµ− ln v, sσ) (exp {σ2} − 1) exp {2µ+ σ2}
Weibull(k, λ) (k/λ) (x/λ)k−1 exp

{
−(x/λ)k

}
(k/s, λs/ν) λ2[Γ(1 + 2/k)− Γ(1 + 1/k)2]

Pareto(k, b) kbkx−(k+1)1[b,∞)(x) (k/s, b2/ν) b2k/[(k − 1)2(k − 2)]

For example, according to Table 5, if X is distributed Log-Normal(µ, σ2) then

(X/ν)s is distributed Log-Normal(sµ− ln v, s2σ2). Appealing to Theorem 1, (X/ν)s

ε−satisfies Benford’s Law for sufficiently large s, or equivalently, the Log-Normal

distribution ε−satisfies Benford’s Law for sufficiently large σ2. Consequently, for

each distribution in Table 5 and ε > 0 there is a region in the parameter space where

the distribution will ε-satisfy Benford’s Law. Referring to the Variance column in

Table 5 this is roughly when the variance or shape parameter is sufficiently large.

This formally confirms observations by Leemis et al. (2000) that increases in the

shape parameter increase compliance with Benford’s Law.

4.3. Conclusion. This paper derives new test values and improves upon existing

tests for evaluating compliance with Benford’s Law. Also provided are new results

which broaden the range of data to which such tests can be applied through a sim-

ple transformation. This transformation also induces scale invariance with respect

to compliance with Benford’s Law which frees tests from dependence of choice of

measurement units. An upper bound on the rate of convergence to Benford’s Law

is also provided. Methods in this paper may therefore be used to characterize pre-

cisely which particular members of a family of distributions satisfy Benford’s Law,

and have particularly clean implications for the Log-Normal, Weibull, and Pareto

families. Finally, it is my hope that the methods of this paper might be applied
17



when considering generalized classes of FSD distributions (Rodriguez 2004; Hurli-

mann 2006; Grendar et al. 2007) which are other promising avenues for relating

limited distributional information to data quality.
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Appendix A. Proofs

It is useful to partition (0,∞) into sets {Ad,k} related to First Significant Digits.

Definition. For real k define the dth FSD set of order k, Ad,k by

Ad,k ≡ [d · 10k, (d+ 1) · 10k)

Clearly for any x > 0 the FSD of x is d iff there exists an integer k s.t. x ∈ Ad,k,

so that x has FSD equal to d iff x ∈ Ad where Ad ≡
⋃
k integerAd,k. In particular

log10Ad,k = [log10 d · 10k, log10(d+ 1) · 10k) = [k + log10 d, k + log10 (d+ 1))

so that (where | · | denotes Lebesgue measure when appropriate) | log10Ad,k| =

log10 (1 + 1/d) for any k. Carrying over the results to a general base b presents no

overwhelming difficulties. However, as the literature has focused on applications

using base 10 I stick to base 10 avoiding the extra notational baggage.

A.1. Proofs for the Main Text.

Lemma. Suppose X is a positive random variable with continuous pdf and let Y ∼

log10X. If Y ∈ I(ε) then X ε−satisfies Benford’s Law.

Proof. Let f denote the pdf of Y , and by definition of Ak,d and Ad we have that

Pr(X has FSD = d) = Pr(Y ∈ log10Ad) =
∞∑

k=−∞

∫
log10 Ad,k

f(y)dy(A.1)

By assumption Y ∈ I(ε) so there exist constants {ci} such that for each FSD d,

ε ≥ |
∞∑

k=−∞

∫
log10 Ad,k

f(y)dy −
∫
log10 Ad

∑
ci1[i,i+1)(y)dy|

= |Pr(X has FSD = d)−
∞∑

k=−∞

∫
log10 Ad,k

∑
ci1[i,i+1)(y)dy|(A.2)
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where the second line follows from Equation (A.1). Since log10 d < 1 we know that

[k + log10 d, k + log10 d+ 1) ∩ [i, i+ 1) = ∅ unless k = i so letting 1A denote the set

indicator function,

1[k+log10 d,k+log10 d+1](y)
∑

ci1[i,i+1)(y) = ck1log10 Ad,k(y)(A.3)

Using Equation (A.3), we have

∞∑
k=−∞

∫
log10 Ad,k

∑
ci1[i,i+1)(y)dy =

∞∑
k=−∞

∫
log10 Ad,k

ckdy = [
∞∑

k=−∞

ck] log10(1 + 1/d)

(A.4)

Pairing Equations (A.4) with Equation (A.2) we have that

ε ≥ |Pr(X has FSD = d)− [
∞∑

k=−∞

ck] log10(1 + 1/d)|(A.5)

Finally from Lemma 2 we may assume WLOG that ci =
∫
[i,i+1]

f(x)dx so that∑
ck = 1, giving the desired inequalities. �

Lemma. Suppose
∫
|f(x)| dx <∞. Then c∗ ≡

∫
[0,1]

f(y)dy solves

min
c

sup
A measurable

∣∣∣∣∫
[0,1]∩A

[f(x)− c]dx
∣∣∣∣

and the minimum attained is 1
2

∫
[0,1]
|f(x)− c∗| dx.

Proof. This holds for the same reason that the median is a minimum absolute dis-

tance estimator. See the supplemental appendix for details. �

A useful bound on the minimum 1
2

∫
[0,1]

∣∣∣f(x)−
∫
[0,1]

f(y)dy
∣∣∣ dx in the last Lemma

is the following:
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Lemma 4. Let Y be a random variable with continuous pdf f.

1

2

∫
[0,1]

∣∣∣∣f(x)−
∫
[0,1]

f(y)dy

∣∣∣∣ dx ≤ min

{∫
[0,1]

f(y)dy,
1

2
sup
y∈[0,1]

f(y)− 1

2
inf

y∈[0,1]
f(y)

}

Proof. The last Lemma showed that

1

2

∫
[0,1]

∣∣∣∣f(x)−
∫
[0,1]

f(y)dy

∣∣∣∣ dx = min
c

sup
A

∣∣∣∣∫
[0,1]∩A

[f(x)− c]dx
∣∣∣∣

whereA is any measurable set, so clearly for c = 0 we have 1
2

∫
[0,1]

∣∣∣f(x)−
∫
[0,1]

f(y)dy
∣∣∣ dx ≤∫

[0,1]
f(y)dy. Alternatively, consider estimating c∗ ≡

∫
[0,1]

f(y)dy by ĉ ≡ 1
2

supy∈[0,1] f(y)+

1
2

infy∈[0,1] f(y). In this case, |f(x)− ĉ| ≤ 1
2

supy∈[0,1] f(y)− 1
2

infy∈[0,1] f(y) so

sup
A

∣∣∣∣∫
[0,1]∩A

[f(x)− ĉ]dx
∣∣∣∣ ≤ sup

A

∫
[0,1]∩A

|f(x)− ĉ| dx ≤ 1

2
sup
y∈[0,1]

f(y)− 1

2
inf

y∈[0,1]
f(y)

Putting the two bounds together gives the result. �

Theorem (Mean-Scale Approximation). Let Y be a random variable with continu-

ous pdf. For each ε > 0 there exists a σ(ε) s.t. σ ≤ σ(ε) implies (Y − µ) /σ ∈ I(ε)

for all µ.

Proof. I first show rY ∈ I(ε) for sufficiently large r. Fix ε > 0 and denote the pdf of

Y as f . For any fixed r, the pdf of rY is f(x/r)/r so from Lemma 2, it is sufficient

to show that

∑
k

1

2

∫
[k,k+1]

∣∣∣∣f(x/r)/r −
∫
[k,k+1]

f(y/r)/rdy

∣∣∣∣ dx ≤ ε

Since limn−→∞ Pr(|Y | ≤ n) = 1 there exists an N s.t. Pr(|Y | ≥ N − 2) < ε/2. Now

from Lemma 4 we know that

∑
|k|≥rN−1

1

2

∫
[k,k+1]

∣∣∣∣f(x/r)/r −
∫
[k,k+1]

f(y/r)/rdy

∣∣∣∣ dx ≤ ∑
|k|≥rN−1

∫
[k,k+1]

f(y/r)/rdy =
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∑
|k|≥rN−1

∫
[k/r,(k+1)/r]

f(y)dy ≤
∑

|k|≥N−2

∫
[k,k+1]

f(y)dy < ε/2

So to show rY ∈ I(ε) it is sufficient that for all sufficiently large r,

∑
|k|≤rN

1

2

∫
[k,k+1]

∣∣∣∣f(x/r)/r −
∫
[k,k+1]

f(y/r)/rdy

∣∣∣∣ dx < ε/2

Again from Lemma 4 we know

∑
|k|≤rN

1

2r

∫
[k,k+1]

∣∣∣∣f(x/r)−
∫
[k,k+1]

f(y/r)dy

∣∣∣∣ dx ≤(A.6)

∑
|k|≤rN

1

2r

[
sup

y∈[k,k+1]

f(y/r)− inf
y∈[k,k+1]

f(y/r)

]

Since f is uniformly continuous on [−N,N ] compact, ∃δ ∈ (0, 1) s.t.

sup
y∈B(x,δ)

f(y)− inf
y∈B(x,δ)

f(y) < ε/2N ∀x ∈ [−N,N ](A.7)

where B(x, δ) denotes a closed ball of radius δ around x. Equation (A.6) implies for

all r ≥ 1/δ,

sup
y∈B(x,1)

f(y/r)− inf
y∈B(x,1)

f(y/r) < ε/2N ∀x ∈ [−N,N ]

combining this with Equation (A.6), we have

∑
|k|≤rN

1

2r

[
sup

y∈[k,k+1]

f(y/r)− inf
y∈[k,k+1]

f(y/r)

]
≤ 2rN

2r

ε

2N
=
ε

2

and we conclude rY ∈ I(ε) for all r ≥ 1/δ.

I now show that for sufficiently large r, r(Y − µ) ∈ I(ε) for all µ. From Lemma

3 for any particular r it is sufficient to consider only rµ ∈ [0, 1) and since r ≥ 1,
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WLOG µ ∈ [0, 1). The proof proceeds as above, but now we must show that

∑
|k|≤rN

1

2

∫
[k,k+1]

∣∣∣∣f(x/r + µ)/r −
∫
[k,k+1]

f(y/r + µ)/rdy

∣∣∣∣ dx < ε/2

Following the proof exactly, simply choose δ̃ ≡ δ/2 so that Equation (A.7) holds

and for all r ≥ 1/δ̃ we have

sup
y∈B(x,2)

f(y/r)− inf
y∈B(x,2)

f(y/r) < ε/2N ∀x ∈ [−N,N ]

This implies for all µ ∈ (−1, 1) that

sup
y∈B(x,1)

f(y/r + µ)− inf
y∈B(x,1)

f(y/r + µ) < ε/2N ∀x ∈ [−N,N ]

which when substituted into the proof above gives the result. �

Theorem. Let X be a random variable with a differentiable pdf f . Let ε(α) denote

the least ε such that Xα ε−satisfies Benford’s Law. ε(α) is O(1/ log10 α) provided

(1) E |log10X| <∞

(2) supx
∣∣ d
dx
xf(x)

∣∣ <∞
In addition, ε(α) is o(1/ log10 α) when E |log10X|

2 <∞.

Proof. WLOG assume X is positive. Let Yα be the random variable defined by

Yα ≡ log10X
α so by Lemma 1, ε(α) is bounded above by ε(α), where ε(α) ≡

inf {ε : Yα ∈ I(ε)}. Letting gα denote the pdf of Yα, Lemma 4 shows that ε(α) is

bounded above by the following equation

ε(α) ≤
∑
i

min

{∫
[i,i+1]

gα(y)dy, sup
y∈[i,i+1]

gα(y)/2− inf
y∈[i,i+1]

gα(y)/2

}
(A.8)

The first expression in the min of this is expression is exactly
∫
[i,i+1]

gα(y)dy =

Pr (Yα = log10X
α ∈ [i, i+ 1]). For the second expression, fix i and consider the
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change of variable

sup
y∈[i,i+1]

gα(y) = sup
y∈[i,i+1]

d

dy
Pr (log10X

α ≤ y) = sup
y∈[i,i+1]

d

dy
Pr
(
X ≤ 10y/α

)
= sup

y∈[i,i+1]

ln 10 · 10y/αf(10y/α)/α = sup
y∈[10i/α,10i+1/α]

ln 10 · yf(y)/α

Similar reasoning holds for the inf term. Since by assumption M ≡ sup
∣∣ d
dx
xf(x)

∣∣ <
∞, the mean value theorem implies

sup
y∈[a,b]

yf(y)− inf
y∈[a,b]

yf(y) ≤M(b− a)

and therefore

sup
y∈[i,i+1]

gα(y)− inf
y∈[i,i+1]

gα(y) = sup
y∈[10i/α,10i+1/α]

ln 10 · yf(y)/α− inf
y∈[10i/α,10i+1/α]

ln 10 · yf(y)/α

≤M ln 10 ·
(
10i+1/α − 10i/α

)
/α

Substitution of these expressions into Equation (A.8) yields

ε(α) ≤
∑
i

min
{

Pr (log10X
α ∈ [i, i+ 1]) ,M ln 10 ·

(
10i+1/α − 10i/α

)
/α
}

Now for any positive real number k we have

ε(α) ≤
∑
|i|≥k

Pr (log10X
α ∈ [i, i+ 1]) +

∑
i<k+1

M ln 10 ·
(
10i+1/α − 10i/α

)
/α

≤ Pr (|log10X
α| ≥ k) +M ln 10 · 10(k+1)/α/α(A.9)

A Chebyshev type inequality shows that

Pr (|log10X
α| ≥ k) = Pr (|log10X| ≥ k/α) ≤ αE |log10X| /k
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Using this bound in Equation (A.9) yields the following bound on ε(α):

ε(α) ≤ αE |log10X| /k +M ln 10 · 10(k+1)/α/α

Consider the choice k = α log10 α/2 so that

ε(α) ≤ 2E |log10X| / log10 α + 101/αM ln 10 · α−1/2

Clearly then limα−→∞ ε(α) log10 α ≤ 2E |log10X| <∞ so ε(α) ≤ ε(α) isO(1/ log10 α).

Apply a similar Chebyshev type inequality when E |log10X|
2 < ∞ for the same

choice of k shows ε(α) is O(1/(log10 α)2) and therefore o(1/ log10 α). �
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